Foundations of Machine Learning Al2000 and Al5000

FoML-02 Probability - Bayes Theorem and Independence

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

• What is ML?

So far in FoML

- What is ML?
- Learning Paradigms

 Provides a consistent framework for the quantification and manipulation of "Uncertainty"

- Provides a consistent framework for the quantification and manipulation of "Uncertainty"
- Where does this 'Uncertainty' come from?

Uncertainty in ML

Measurement Noise

Uncertainty in ML

- Measurement Noise
- Finite size of the datasets

• Frequentist Interpretation

- Frequentist Interpretation
 - Fraction of times the event occurs

Bayesian Approach

- Bayesian Approach
 - o Quantification of plausibility or strength of the belief of an event

- Bayesian Approach
 - Quantification of plausibility or strength of the belief of an event
 - Modeling based approach

- Bayesian Approach
 - Quantification of plausibility or strength of the belief of an event
 - Modeling based approach
 - Plays a central role in this course

Random Variable

• Stochastic variable sampled from a set of possible outcomes

Random Variable

- Stochastic variable sampled from a set of possible outcomes
- Discrete or Continuous

Random Variable

- Stochastic variable sampled from a set of possible outcomes
- Discrete or Continuous
- Probability distribution $\rho(X)$

Random Variable - Example (discrete)

• Throwing a dice

Random Variable - Example (discrete)

• Flipping a coin

- X
- Y

- X
- Y
- N trails: sample both

Joint probability

Joint probability

$$p(X = x_i, Y = y_j) =$$

• If I am interested only on X

- If I am interested only on X
- Marginal probability of X

$$p(X=x_i)$$

Sum rule of Probability

$$p(X = x_i) = \sum_{j=1}^{3} p(X = x_i, Y = y_j)$$

Conditional Probability

Conditional probability of Y given X

$$p(Y = y_j/X = x_i) =$$

Product Rule of probability

$$p(Y = y_j/X = x_i) =$$

Product Rule of probability

$$p(Y = y_i/X = x_i) =$$

$$p(Y = y_i, X = x_i) = p(Y = y_i/X = x_i) \cdot p(X = x_i)$$

- X
- Y
- 60 trails sample both

Marginal distribution ρ(Y)

• Marginal distribution $\rho(X)$

Conditional distribution of X

Example: Marginal & Conditional distributions

Example: Marginal & Conditional distributions

$$\sum_{u \in V} p(Y = y_i/X = x_i) = ?$$

ρ(X): Probability density over X

- ρ(X): Probability density over X
- Probability of x falling in (x, x+dx)
- Probability over a finite interval (a, b)

- Non-negativity
- Normalization

• Change of variables

- Change of variables
- $\bullet \quad \times = O(\lambda)$

- Change of variables
- \bullet $\times = O(\lambda)$
- Probabilities in (x, x+dx) must be transformed to (y, y+dy)

Cumulative distribution function

Rules of Probability Theory

	Discrete	Continuous
Additivity	$p(X \in A) = \sum_{x \in A} p(x)$	
Positivity	$p(x) \ge 0$	$p(x) \ge 0$
Normalization		$\int_{\mathcal{X}} p(x) dx = 1$
Sum Rule	$p(x) = \sum_{y \in Y} p(x, y)$	
Product Rule	$p(x,y) = p(x/y) \cdot p(y)$	$p(x,y) = p(x/y) \cdot p(y)$

Bayes theorem

Bayes Theorem

Product rule

$$p(x,y) = p(x/y) \cdot p(y)$$

Bayes Theorem

Product rule

- $p(x,y) = p(x/y) \cdot p(y)$
- Symmetry property
- Bayes rule
- Denominator

Bayes Theorem

$$p(y/x) = \frac{p(x/y) \cdot p(y)}{p(x)}$$

- Prior probability
- Posterior probability of Y
- Likelihood of X = x given Y = y
- Evidence for X = x

Example

Random variables

- Random variables
 - Box B
 - Fruit F

Prior Box distribution

Prior Box distribution

0

Conditional of F given B

Marginal of F

- Marginals ρ(F=a) = 11/20 & ρ(F=0) = 9/20
- Posterior probability of Box given observed fruit

$$p(B = r/F = o) =$$

Independence

Independent Random variable

 Two random variables X and Y are independent iff measuring X gives no information about Y (and vice versa)

Next Expectation, Variance, and Gaussian Distribution

